7 Fréchet 微分

Fréchet 微分

$$\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon, a) > 0; \ \|x - a\| < \delta$$

$$\Rightarrow \|f(x) - f(a) - \underline{Df(a)}(x - a)\| \le \varepsilon \|x - a\|.$$

Gâteaux 微分 (方向微分) ·

$$df(a; u) = \lim_{t \to 0} \frac{f(a + tu) - f(a)}{t}$$

問題 7.1. 定義に従って f(x,y,z):=xyz および $g(x,y):=x^3y^2$ が全ての点で Fréchet 微分可能であることを示せ (因数分解の問題). さらに、 微分係数を求めなさい.

問題 7.2. 次で与えられる関数が \mathbb{R}^N の各点で Fréchet 微分可能であることを示し, その微分係数を求めなさい.

- (1) A を N 次対称行列, $b \in \mathbb{R}^N$ とするとき, $f(x) := {}^t\!xAx + 2 \, bx$ と表される関数 $f: \mathbb{R}^N \to \mathbb{R}$.
- (2) $f(x) := \|x\|^2 x$ と表される関数 $f: \mathbb{R}^N \to \mathbb{R}^N$.

ちょっとした注意. f(x) が C^1 級であれば Fréchet 微分可能であり, 微分係数 Df は偏微分係数を用いて表せる. なお, 勾配ベクトルと並べ方が違うので注意せよ.

$$Df(x) = \begin{pmatrix} f_{x_1}(x) & f_{x_2}(x) & \cdots & f_{x_N}(x) \end{pmatrix}$$
:行ベクトル、 $\nabla f(x) = \begin{pmatrix} f_{x_1}(x) \\ f_{x_2}(x) \\ \vdots \\ f_{x_N}(x) \end{pmatrix}$:列ベクトル、

問題 7.3. 次の関数に対して,以下の問に答えよ.

$$f(x,y) := \begin{cases} \frac{x^3 - 3xy^2}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

- (1)! (0,0) で連続であることを示せ.
- (2) $f_x(0,0)$, $f_y(0,0)$ を求めよ.
- (3)!(0,0) で Gâteaux 微分可能であることを示せ.
- (4) (0,0) で Fréchet 微分不可能であることを示せ.

問題 7.4. $f,g:A\to\mathbb{R}^N$ は $a\in\mathbb{R}^M$ で Fréchet 微分可能とする.このとき F(x):=(f(x),g(x)) (内積) は $a\in\mathbb{R}^M$ で Fréchet 微分可能であることを示し、微分係数を求めなさい.

問題 7.5. $f:A(\subset \mathbb{R}^N) \to \mathbb{R}$ が C^2 級とする. このとき ∇f は Fréchet 微分可能であり, 微分係数が Hesse 行列 $(f_{x_ix_j}(x))_{ij}$ となることを示しなさい.

問題 7.6. $f:(0,\infty)\to\mathbb{R}$ は C^2 級とする. g(x):=f(r) $(r:=\|x\|)$ に対して以下の問に答えなさい.

- (1) Dg(x)x = rf'(r) を示せ.
- (2) $\Delta g(x) = g_{x_1x_1}(x) + g_{x_2x_2}(x) + \dots + g_{x_Nx_N}(x)$ に対して $\Delta g(x) = f''(r) + \frac{N-1}{r}f'(r)$ を示せ.
- (3) $\Delta q(x) = 0$ となるような関数 f を求めなさい.

問題 7.7. 次の関係式で定まる写像 $f:(x,y)\mapsto (u,v)$ に対して Jacobi 行列と Jacobian を求めなさい.

(1)
$$u = e^x \cos y$$
, $v = e^x \sin y$. (2) $u = \frac{x}{y}$, $v = x - y$. (3) $u = x^3 - 3xy^2$, $v = 3x^2y - y^3$.

(4)
$$u = \log(x^2 + y^2)$$
, $v = \tan^{-1} \frac{y}{x}$. (5) $u = xe^{xy}$, $v = ye^{xy}$. (6) $u = \frac{3x}{2x + 3y}$, $v = \frac{2y}{2x + 3y}$.

問題 7.8. 次の座標変換に対して Jacobian を求めなさい.

- (1) 2次元極座標 $x = r\cos\theta$, $y = r\sin\theta$ に対し $\frac{\partial(x,y)}{\partial(x,\theta)}$.
- (2) 3 次元極座標 $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$ に対し $\frac{\partial (x, y, z)}{\partial (r \theta \varphi)}$.
- (3) 円柱座標 $x = r\cos\theta$, $y = r\sin\theta$, z = h に対し $\frac{\partial(x, y, z)}{\partial(r, \theta, h)}$.

(4) 球面による反転
$$x = \frac{Ru}{u^2 + v^2 + w^2}$$
, $y = \frac{Rv}{u^2 + v^2 + w^2}$, $z = \frac{Rw}{u^2 + v^2 + w^2}$ に対し $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

問題 7.9. 次の関係式で定まる写像 $f:(x,y)\mapsto (u,v)$ に対して P の近傍で C^1 級の逆写像が存在する か調べよ. 存在する場合はその微分係数 $Df^{-1}(f(P))$ を求めよ.

(1)
$$u = 2x + 3\sin y$$
, $v = xy$, $P(1,0)$. (2) $u = x^3 - 3xy$, $v = xy^2$, $P(1,1)$.

(2)
$$u = x^3 - 3xy$$
, $v = xy^2$, $P(1,1)$.

(3)
$$u = x \sin y$$
, $v = y \cos x$, $P(0,0)$.

(3)
$$u = x \sin y$$
, $v = y \cos x$, $P(0,0)$. (4) $u = x^4 - 4xy^2$, $v = 6x^2y - y^3$, $P(1,1)$. (5) $u = xe^{xy}$, $v = ye^{-xy}$, $P(-1,1)$. (6) $u = x^2 - y^3$, $v = y^3 + x^2$, $P(1,-1)$.

(5)
$$u = xe^{xy}$$
, $v = ye^{-xy}$, $P(-1,1)$

(6)
$$u = x^2 - y^3$$
, $v = y^3 + x^2$, $P(1, -1)$.

問題 **7.10.** 次の関係式で定まる写像 $f:(x,y)\mapsto (u,v)$ の逆写像について微分係数 $Df^{-1}(u,v)$ を x,yの式で表せ.

(1)
$$u = x^3 - 3xy + y^3$$
, $v = x^3 - y^3$. (2) $u = e^{-3xy}$, $v = \log(x^2 + y^2)$.

(2)
$$u = e^{-3xy}$$
, $v = \log(x^2 + y^2)$.

(3)
$$u = \cos(x^2 - 3xy), v = \sin(y^2 + 3xy)$$

(3)
$$u = \cos(x^2 - 3xy)$$
, $v = \sin(y^2 + 3xy)$. (4) $u = \tan^{-1}\frac{y}{x}$, $v = \log(x^2 - xy + y^2)$.

問題 7.11. $f,g:O(\subset \mathbb{R}^2)\to \mathbb{R}$ で C^1 級であり、停留点がないとする. 更に $f_x=g_y,\,f_y=-g_x$ とす る. このとき $\xi = f(x,y), \eta = g(x,y)$ によって C^1 級関数 $x = u(\xi,\eta), y = v(\xi,\eta)$ が定まり, $u_\xi = v_\eta$ $u_{\eta} = -v_{\xi}$ となることを示しなさい.

問題 7.12. 次の関係式で定まる写像 $F:(x,y)\mapsto (u,v)$ に対し微分係数 DF(x,y) を x,y,u,v の式で 表しなさい.

(1)
$$x + y + u + v = 2$$
, $x^2 + y^2 + u^2 + v^2 = 2$.

(2)
$$x^2 + y^2 + u^2 + v^2 = 4$$
, $ux^2 + vy^2 + u^2y + v^2x = 4$.

(3)
$$xu + yv = 2$$
, $x + y + u + v = 2$.

$$(4) (x+v)(y+u) = 4, xy(u+v) + uv = 3.$$

問題 7.13. $f, g: O(\subset \mathbb{R}^2) \to \mathbb{R}$ で C^1 級とする. f(x,y) + g(u,v) = 0, g(x,y) - f(u,v) = 0 で定まる 写像 $F:(x,y)\mapsto (u,v)$ がある近傍で一意に存在する条件を与え、 微分係数 DF(x,y) を x,y,u,v の式 で表しなさい.

問題 7.14. 次の関係式で定まる写像 $F:(x,y,z)\mapsto (u,v)$ に対し微分係数 DF(x,y,z) を x,y,z,u,vの式で表しなさい.

(1)
$$x + y + z + u + v = 3$$
, $x^2 + y^2 + z^2 + u^2 + v^2 = 5$. (2) $xyz + uv = 2$, $yu + zv + x = 0$.